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SUMMARY

VERIFICATION

A method based upon the theory of characteristicshas been developed
to compute the contour of a body for a prescribed pressure distribution.
An indication of the accuracy of the method was obtained by using the
pressure distribution which had been determined by the conventional method
of characteristicsto compute the ordinates near the nose of a body. The
agreement between the original and computed ordinates was good. A model
was constructed.with an initial included cone angle of 30° smd a contoux
to give-a linear pressure distribution for a free-stream Mach number
of 3.13. Good agreement between the experimental and computed pressure
distributions was obtained when the model
numbers of 3.05 and 3.13.

JJYl130DIlcTION

was tested at free-stresm Mach

In the past, no method that permits computation of a body of revo-
lution with a particular pressure distribution has been available. The
design of such a body would be useful in the investigation of many aero-
dynamic problems such as those associated with body-wing interaction,
inlets, and boundary-layer transition, separation, and shock interaction.
h this paper, a method based upon the theo~ of characteristicshas
been developed to compute the contour of a body for a prescribed pres-
sure distribution. This method has been used to compute the contour of
a body which has a constant pressure gradient. This pressure distribu-
tion was chosen since the theoretical approach to the problem of tran-
sition indicates that it would be desirable to have, for certain experi-
mental studies, a constant pressure gradient. The available experimental
data on bodies of revolution is restricted to cones which have a zero
pressure gradient and to bodies whic”hhave a varying pressure gradient.
A scale model has been constructed and the experimental pressure distri-
bution checked with theory.
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SYMBOLS

CP pressure coefficient

I image

L length of body

L1 distance from nose to point of r-

m=sin Lltanll sine

Cos(e - P)

M Mach number

o object

P static pressure

P. stagnation pressure

Po ‘ stagnation pressure behind bow shock

q= ; Pk2

r radius

R Reynolds number

v velocity

VZ limiting velocity

1’7 limiting velocity ratiO, v/vz

XYY coordinates of flow field

ec + ea
a.

2
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NACA TN 3555

?3= f3g+ deg,h

E shock angle

7 ratio of specific heats, 1.405

AI+ tan(e + p)

v conical flow angle

e stream direction

@ meridian angle about axis of symmetry

P Mach angle

Subscripts:

b body

c cone

m mean value; when preceded by a 2, a second mean value is
indicated

“max maximum

n any point

N normal to shock

t* theory

03 free-stresm conditions “

a,b,c, . . . points in the characteristic net
.

METHOD OF DESIGN

A sharp-nose body of revolution with a prescribed pressure gradient
may be designed in the following way: The nose canbe considered conical
for a short distance, and the values of the flow properties - p the Mach
angle and 6 the stresm direction - along the characteristic line af
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(see fig. 1) can be determined for smy conical flow angle q from refer-
ence 1. If Cp is assumed to be linear with x (see fig. 2), the slope

of the body at any point is determined by the method of characteristics
as outlined in reference 2. For a characteristic of A1l (the entropy

terms being disregarded), the basic formulas

~=tsm(e -v)
ax

are as follows:

(1)

If the limiting velocity ratio

vz2_L=1+&L—_
& @ 7-1#

(2)

(3)

is introduced and equations (1) and (2) are applied to the determination
of the flow properties at a petit c on a specific body (figs. 1 and 2)
with the following relations:

deb,c = ec - eb

dxb,c ‘xc - ‘b

where (3 is measured in radians snd equation (2) becomes

‘b ‘ib,c WC - Wb
-—

yh w~

where

-[ 1m_.5inestiutmp
cOs(e - IL) b

the f3c corresponding to each VA-E of deb,c is

(4)

“ (5)

(6)

——.

(7) ‘
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The value of dxb,c and Wc to be used in equation (5) is determined
as follows: Draw a straight line from point a to an intersection of
the ~11 characteristic originating at point b. For an approximation,
the augle of the line to the horizontal is slightly less than the slope
of the conical surface leading to point a. This intersection is brack-
eted by several values of dxb,c and their corresponding values of WC
are determined from the Cp variation given in figure 2 and the following
relations:

(8)

(9)

The variation of po’ p. with the
/

disregarded”and the ratio taken as
order to determine the Mach number
following eqmtion is used:

curved portion of the shock will be

that due to the initial cone. Jn
at any point n on the surface, the

Mn =

If equation (3) is used, Wn cau be determined and

.

A second condition must be satisfied for the final evaluation of
the properties of point c. A geometric relation for xc aud (3C is
obtained by writing the equations for the lines ac and bc; thus,

(11)

(12)

(13)

...— ——...— ___ ______
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(’3C+ ea
a.

2
(14)

Equation (13) is solved for several values of as e at the pre-
ceding petit on the body. The results of equations (13) and (5) are
plotted against dxa,c where

axa,c =X=-xa (15)

The intersection of the two curves represents the point c. The terms FLc

and ~ sre obtatied’by substituting the intersection values into equa-

tions (11) and (12).

b order to obtain a second approximation of the properties of the
flow at a point on the body, equations (6) and (7) are written:

%mtib,c -Wc ‘l”~b
Yb + yc Wb + WC

2 2

Pb + ~c
tsll

2

+ eb (16)

(17)

where the subscript c refers to the intersectionvalues of the first
approximateion. Equation (13) is rewritten as

(6b + ec
Xb t~.~ - 2 ‘yb-xa tsll~

Xc,m =

( )

(18)
eb + ec ~b + ~c

tan -tarlq
2-2

Equation (14) becomes

ec,m.~-Oa (19)

,.

.—— -——-
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The results of equations (18) and (16) are plotted as Oc,m against ‘

dxa,c,m smd from this plot the intersectionvalues are determined. For

a body with a negative pressure grsdient, the slope at any point on the
surface must have On < en-l.

The equations for determining the flow properties of a field point
and a point on the curved portion of the bow shock by the method of char-
acteristics have been presented in the literature and are presented for
the convenience of the reader in appendix A.

The finite distances between the computed points along the surface
of the body are determined by the number of q (fig. 1) used between
qcand~=~ on the conical nose. On the afterportion of the body,

the characteristics are widely sepsrated, the slope of the surface is
changing rapidly, and no intersection of the characteristic with the
surface of the body is obtained behind point t. (See fig. 3(a).) A
new field point u corresponding to a more closely spaced characteristic
net (see fig. 3(a)) is obtained by averaging all the properties of the
points t ad r. A more detailed characteristicnet used to determine the
afterportion of the body is presented in figure 3(b).

The number of approximations necessary to insure a high degree of
accuracy was determined by applying the method of this report to a body
of revolution with zero pressure gradient (a cone) with ~c = 150 and

Mm = 3.02. The points a, b, d, and so forth, of figure 1 were determined

from reference 1. The computed Q (along the surface) rapidly approaches
its true value asymptotically; that is, a first approximation of the
point c gave ec = 14.82°; a second approximation, ec,m = 14.990; and

a third approximation, ec,a = 14.9930. A second body petit was computed

by using the second-approxktion values of points c aud e. The results
were 02 = 14.80° and OZ,m = 14.97.

The pressure distribution of a parabolic body used in reference 3
was determined by the method of characteristics. The resulting pressure
distribution was used to determine several ordinates snd slopes on the
initial portion of the nose of the body by the method outlined in this
report which used the second-approximationvalues. A comparison of the
resultant body with the original body is presented in table I and indi-
cates close agreement.
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h order to obtain experimental corroboration of the method outlined
ti this report, a model wi~h the following conditions was desiaed:

dCp
I& = 3.13, = 0.3202, and qc = 15°

d(x/L)
with an initial cone length

of 1 inch. The x/L, y/L, 0, M, and ~ for the resultant body are

shown in figure 4.

The downstream end of the body is defined by the method of chsz-
acteristics as the petit on the contour
becomes zero and csn be determined from

dcp
constant

d (x/L):

where the local static
the following relation

L= ‘a

AT +1

dCp

q d(x/L)

pressure
for a

where xa is the ordinate corresponding to the base of the conical

nose and

AP,= px=a - PX.L = Px.a

The description of the flow by the characteristicnet h the
vicinity of this lhniting length is extremely laborious and from the

(20) r

(21)

nature of the flow has no physical significance. Accordingly, the net

was terminated at ~ = 0.98% (whichwill be designated ~) where

M= 6.203.
(

The msximum radius of the body ~= o.1o16 occurred at
%“ )

x – 0.6678 and the resultant fineness ratio was 4.919.
%)

The Bell Telephone Laboratories x-66744 relay computer at the
Langley Laboratory was used for the computations of the example body
up to 88.8 percent of L. The averaging process previously described
for determining a more closely spaced characteristicnet had to be com-
puted on desk calculators. This method is very time consuming and
requires 605 hours for the computation of the entire body (425 hours on
the Bell machine and 180 hours on the desk calculators). As a comparison, :

—.— - — . .- —.
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the average time for computing the pressure distribution for a body of
revolution with a given contour by the method of characteristics on the
Bell machine is 120 hours. Convergence on a solution
with a different machine from those available for the
this project.

Computation of ~ for Off-Desi@ Mach Number

could be expedited
computation of

Operation

In order to determine the effect of varying the free-stream Mach
number on the body which had a linear pressure distribution at ~ = 3.13,

the pressure distribution was computed by the method of characteristics
for ~ =3.02 and & =4.16. The ordinates of the body are presented

in table II.

The computations for lQ = 3.02 were terminated at the point where
further computations would have to be done on desk calculators. The
resultant surface Mach number and pressure coefficient are shown in
figures 5 and 6, respectively. The plot of Cp against x/L indicates

that the pressure distribution is almost linear for & = 3.02 but not
for & =4.16. A plot of dCp/dx against x/L (fig. 7) is indicative

of the effect of varying the free-stream Mach numbers.

Comparison of Constsmt-~essure-Gradient Body With

NACA RM-10 Research Missile

In order to illustrate the effect of body shape on the pressure
distribution, the constant-pressure-gradientmodel is compared with the
NACA RM-10 research missile. The contour of the NACA RM-10 model is
defined as

where L = 93 inches for comparison with the constant-pressure-gradient
model. The Mach number and the pressure distribution determined by the
method of characteristics for the NACA RM-10 research missile at & = 3.12

are sho~.min figure 8. h figure 9, the slopes of the contours for the
two bodies are sho~.mwhere the abscissa is /X L1 and L1 is the distance
from the nose to the point of ‘r-. ‘I’hecondition of constant pressure

gradient requires a relatively blunt afterbody. It is obvious that the
relation of constant pressure gradient implies an invariant relation
of 0 with x> snd within reasonable limits the value of dp/dx is
inversely proportional to the length.

—. .- _.-—.._-
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Tests on
ducted in one

APPARATUS AND TESTS

a model of the constant-pressure-~adient body were con-
of the blowdown jets of the Iangley Gas Dynamics Branch.

The test facility consisted of-nozzle blocks to give M = 3.05 and ‘
M = 3.13 with test-section sizes of 8 by 10 inches and 9 by 9 inches,
respectively. The test section of each set of nozzle blocks was cali-
brated by measuring the free-stream static pressure in th~ vertical
center plane with the multitub,erake shown in figure 10. High-pressure
air was heated and discharged through the two-dimensional symmetrical
nozzle smd diffuser to the atmosphere. The pressmes were measured on
a mercury manometer bosrd and photographically recorded. The results
shown in figures 11 snd 12 indicate that M = 3.05 AO.043 and M = 3.13
+0.049, respectively, over the entire region that was surveyed. A
schlieren photograph of the flow in a region of the test section of the

M= 3.’b5 nozzle at a Reynolds number per inch of 2.77 X 106 is shown
in figure 13 and a schlieren of the flow in the M = 3=13 nozzle at a

Reynolds number per inch of 2.64 x 106, in figure 14.

Measurement of aerodynamic characteristicsthat are affected by
the boundary-layer development sre governed by the trsmsitional Reynolds
number. The transitional Reynolds number was obtained by heat-transfer
measurements on a 10° cone to indicate the steadiness of the free streem
h this facility as compared with that of other NACA facilities. The
method smd results sre discussed in appendix B.

The constsnt-pressure-gradientmodel has a length of 17.55 inches

( )
~ = 0.9781 and a maximum diameter of 3.608 inches and is constructed
L
of Paraplex with a steel central core and coated with heat-resistant
~henolic lacquer for added strength and heat resistance. A sketch of
the model and a table of ordinates are shown in figure 15 and a photograph
of the model in figure 16. The completed model was accurately measured
on a jig-boring machine and the resul.tsntordinates are plotted as a
deviation of slope of the surface from the slope of the prescribed ordi-
nates in figure 17. The differences between the prescribed and measured
slopes are shown to be small. The model was mounted on a sting which
was supported by a strut spsmning the tunnel downstream of the diffuser.
A sketch of the model and sting support mounted h the M = 3.13 tunnel
is shown in figure 18. Thirty-five static-pressureorifices (0.020-inch

inside diameter) were located at &inch increments along a longitudinal

element of the body with one orifice diametrically opposite the foremost
orifice to determ~e the angle of attack.
on a multitube mercury manometer bosrd snd

The pressures were measured
photographically recorded.

.
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The effect of orifice size on the static-pressuremeasurements on
a body of revolution with a small boundary layer was determined on a small
30° cone. Three orifices (0.00&, 0.0135-, ~d 0.0200-inch inside dism-
eter, including the orifice size for the design model) were located at
two axial stations corresponding to the locations of the first two static-
pressure orifices on the constant-pressure-gradientmodel. A sketch of
the model illustrating the size snd location of the orifices is shown
in figure 19 and a photograph of the model, in figure 20. The cone was
tested with the orifices at @ = 0° and 90° at & . 3.13 over the
same range of free-stream Reynolds numbers used for the tests of the
design model. A comparison of the measured Mach number with the predicted
Mach number (ref. 1) indicated that the error is a maximum for the small-
est orifice and is essentially zero for the orifice with a 0.020-inch
inside diameter.

The effect of free-stream static-pressurevariations on the
longitudinal-pressuredistribution for the design model was determined
by rotating the model about its axis of symmetry and recording the pres-
sures for fi=o”, 90°, and180°. ~ the M = 3.05 tunnel, the model
was also tested at the three axial stations shown in figure 11 with the
orifices at fl= 0° to determine further the effect of flow discontinu-
ities. ‘lineranges of test Reynolds numbers based on body length were

3.61 X107t04.86X107for” M= 3.o5 and 3.76 x107 t04.62 x107
for M = 3.130 Composite schlieren photographs taken during the tests
are sho~m in figures 21 and 22.

ACCURACY OF TFST DATA

A number of pressures were measured for the purpose of determining
the free-stream Mach number snd the pressure coefficient along the model.
The overall accuracy is dependent upon the individual accuracy of each
measurement. The accuracy of measuring the stagnation pressure on a gage
was ~0.1 lb/in.2, and the accuracy of reading it on a manometer board was
~0.1 inch of mercury. The overall accuracy for determining ~ is to.003.

A comparison of the experimental points with the computed curve indicates
a deviation greater than the accuracy of measuring C$. This deviation is
explained by the deviation of actual model contour from the design (see
fig. 17) and the growth of boundary layer.

RESUIJI’SAND DISCUSSION

Tests at M = 3.05

The schlieren photograph (fig. 13) shows several compression waves
symmetrical about the horizontal center plane of the tunnel. The nozzle
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calibration indicates that only one set of these waves has sufficient
strength to be of concern. The model was tested in three axial positions
(fig. 11) smdthree radial positions with thernodel inpositionl. The
results of these tests are plotted as ~ against x/L in figure 23

where the solid ltie is the computed distribution for & = 3.02. The

region of compression causes a pressure rise at $ = 0.195 to 0.31 witli

x – 0.085 to 0.20 withthe model imposition 1 and is moved forward to ~ -

the model in position 2 in the tunnel. (These bumps are dotted for
clarity of fig. 23(a).) Ih axial position 3 the compression does not
intersect the body. The result of rotating the body about its axis of
symmetry in position 1 is shown in figure 23(b). The pressure rise that
occurs when the line of orifices intersect the compression wave is dotted
for clarity. The slope of the compression can be deternrinedfrom the
schlieren (fig. 13) and can be checked with the results of rotating the

model about its sxis. The Reynolds number was varied from 36.1 X 106

to 48.6 x 106 with the model in position 1 and the orifice at @ = OO.
There was no effect on the pressure distribution (fig. 23(c)).

The experimental data (fig. 23) were corrected for the free-stresm
static-pressurevsriation by simple superposition except in the region
of the bump. The bump in the ~ curve due to the compression waves in

the nozzle was corrected by decreasing the measured static pressure by
the ratio of the pressure rise across sn oblique shock, the intensity of
which corresponds to the decrease in Mach number shown in figure 11.’
The coarseness of the nozzle calibration allows considerable latitude in
the detail of the Mach number distribution in the compression region and
the distribution was assumed so that it was compatible with the calibra-
tion and eliminated the bump in the Cp curve. The effect of this com-

pression had been completely’eliminated when the compression distribution
h the flow was applied as a correction to the model in all positions, as
is shown in figure 24. lh inspection of figure 24 shows an excellent
agreement between the computed snd experimental ~ curves.

The pressure rise in the victiity of the base of the body is asso-
ciated with the boundary-layer separation as seen in figure 21.

The body
effect of the
distribution.

was rotated
free-stream

Tests at M = 3.13

about its sxis of symmetry to evaluate the
discontinuities on the longitudinal-pressure

The experimental data corrected for the free-stresm static-
pressure variations by simple superposition are shown in figure 2~(a) with
the computed pressure distribution. The first two orifices located dia-
metrically opposite from each other, 0.5 inch from the nose, have a

—-. .. ..—
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reversal of pressure differential for @ = 0° and 1800; this reversal
indicates that the model was at a slight angle of attack with the line
of orifices on the windward side for @=OO. The Reynolds number was

varied from 37.6 x 106 to 46.2 x 106 with the orifices at @ = 0° with
no effect on the pressure distribution (fig. 2’3(b)). .

A close exsmination of the flow schlieren (fig. 22) shows the
conical shock angle is greater than the computed value from reference 1,
but the accuracy of measurement is not sufficient to determine the free-
stresm Mach number. A comparison of the boundary-layer thickness along
the nozzle surface with that in figure lk shows the boundsry layer is
approximately 0.032 inch thicker when the model is mounted in the tunnel.
The effect of the model in the small test section might be to reduce the
free-stresm Mach number from 3.13 to 3.07. When M= 3.07 is used to
reduce the experimental.data, there is good agreement with the computed
pressure distribution for the design conditions. The pressure rise in
the vicinity of the base of the body is due to the boundary-layer
separation.

CONCLUDING RlM&RK3

A method based upon the theory of characteristics has been devel-
oped to compute the contour of a body for a prescribed pressure distri-
bution. An indication of the accuracy of the method was obtained by
using the pressure distribution which,had been determined by the conven-
tional method of characteristicsto compute the ordinates near the nose
of a body. The agreement between the original and calculated ordinates
WaSgood. The contour of a body with a constant pressure gradient at
a Mach number of 3.13 was computed; a model was constructed smd tested
at Mach numbers of 3.05 and 3.13. Excellent agreement with the computed
distribution was obtained.

Langley Aeronautical Laboratory,
National Adviso~ Committ&e for Aeronautics,

Iangley Field, Va.j October 21, 1955.

~.. —-~ ——..— . . ..—
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APP~~ A

EQUATION FOR DETERW3UNG TEE FLOW PROPERTIES OF A FIELD FOINT

The equations for determining the flow properties of a field petit
snd a point on the curved portion of the bow shock have ‘beengiven in
a references and sre presented in this appendix for the convenience
of the reader.

The equations for the first approximation of a field petit e (fig. 1)
are as follows:

Y~ ‘yd-xc tan(ec + @ +Xd t~(ed - ~d)
Xe = (Al)

t~(ed - Ud) - ta(ec + @

ye = (Xe ‘Xd)tm(ed - Yd) ‘Yd “_ (A2)

WC
(

% Zc WC
1

-~
-ec- ed)tan Pd+~ (Xe - Xd) - — (Xe - xc) ~

Yc
ee =ec+ 1.7

where

Then,

Zc =

i-

(A3)

Sinutsnllsine
\ (A4)

cos~ + p)

we = WC + WC (ee --cc)-t=pc+~(xe -Xe j
(A5)

& 2

The term we is determined from equation (12).

The eqyations for the second approximation are as follows:
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( ~d + we
Y~ - )yd+xdt~+-~ (e=+ee+ ~c + pe

- xc tan
x 2 2 )
e,m =

(

Od + ee Pd + Pe

)(

ec + ee
tan ~ - z

WC + We

)
-tan z +~

(A6)

(Eld-1- ee
Yejm ‘ (xe,m - Xd)tSZl ~ -

)
‘d~pe +Yd (A7)

\

de z
c,e,m =

2

Pa + we ITc i- we p=+ p= (A8)

-hll —-t—2 tan—w~+ we 2

(A9)

llc + l-le WC + we ec -1- ee
sin

2
tan z sin ~

zc,m =

(

ec -f-ee Vc + Pe
Cos

2+2 )

0e,m = dOc,e,m + Oc (A1O)

[

(
UC + pe

1‘e,m - ‘c Wc + w
We,rn= ee m - ec)tanY 2

+-L
C>m y= + ye 2

e + Wc (All)

2

The final x-value of the field point is that calculated from equa-
(A6) where Xe,m corresponds to an average value of w and e fortion

the first approximation obtained by using points c, d, and e.

In order to determine the properties of point h, the intersection
of a AI characteristic with the bow shock, assume the line fh (fig. 1)

iS a straight line, the slope of which is tan ~, and the line gh is
straight with a slope of tan(w + O)g. As a result,

-. _ .—.. _..—._..— .—..__-._. —“..—..—-------- -—.——
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Yg -yf+x@n e-xgtan(l.l+e)g
xh =

tan E- tan~p -1-e)g

and

yh = (Xh - Xf)tan e + y-f

With the use of the general equation of a shock,

we,g
()
dW ‘gg,h xh

— - deg,h tSll~g -
-Xgz

Wg ‘1+ Z5egWg
=0

Yg”g

Then

Xh-x ‘e,gbg+ l--
Yg

deg,h = ‘g

()

dW 1— - tan Wg
= eg Wg

(A12) “

(A13)

(A14)

#

(A15)

where the subscript f3g corresponds to a deviation across the shock

at h equal to e, of point g. Therefore,

and

eh = ah = eg + deg,h

W~ =We,g +
()

dW
‘eg,h=e

g

(A16) .

(A17)

The method of determining (dw/d~)e and We,g. will be presented

after the equations-for the second appro%mation of point h which are
as follows:

~+~h pg+eg+~+eh

Yg -yf+~tan p -xgtan 2
%,m ‘

(A18)
~+~h Pg+eg+~h+eh

tan - tan
2 2

—. —.———-
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d8g,.,~

‘h,m -Xgl
‘g - %,g

yg,m
g,m +

‘g,m

()
dW 1
me

— - tan pg,m
g ‘%m

()dW‘h,m ‘We,g+ me ‘eg,h,m
g

(A19)

(A20)

‘hjm = bh,m = ‘g + ‘Og,h,m

The term Zg,m is computed from equation (A9) by substituting g for c

()
and h for e. The terms ‘w

E Og
and Wg,g are constant for both

first and second approximations. The shock angle corresponding to bh,m
is used to determine the next point on the shock but not to determine
the location of point hm.

As outlined in reference 2, dW/d5 is the tangent, at the point
5 = eg) to the curve that represents W as a function of b. The usual

procedure is to determine this property graphically and regard the quan-
tity as constant along the curved portion of the shock. An analytical
expression is necessary to determine dW/d5 to a more accmate degree
and to consider the curvature of the bow shock for computing the char-
acteristic net on a Bell Laboratories x-66744 relay computer. If the
two-dimensional

and

Since

shock equation is used,

1: (y+l Mm2

tan 8
)

-ltane
2 l&2sin2e - 1

tan c 2

(

1—= —
tan ~ 7 + 1M22sin2~

+ti
2

)

then, by using the notation of this reyort,

(A22)

(A23)

(A24)

.. .. ---- . ..——..._. ..-.-— ---- .—.-.-—.—...—— — —— . . ..-..— ..- _ —.—.—._.——__——- ._
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dl

(

+

)

Mm2 -1 I
.— = —-
d~ tan bg &2sin2cg - 1

2
Cos E!Z

(A25)

(A26)

1 2

(

+
tan cg

= sin
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, The variation of dW/db from the point where shock curvature begins to
the last point on the shock where a characteristic of X11 family inter-
sects the stern of the body (see fig. 26) was computed for the constant-
pressure-gradientmodel. For I& = 3.13, dW/db varied from -0.33937

~ to -0.31145 at Vn+l.at v

.
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APPliNDIXB

METHOD OF DETERMINING THE TRANSITIONAL REYNOLDS NUMBER

OF THE M =3.13 NOZZLE

In a project of this type, where a computed distribution is to be
compared with the actual pressure distribution on a body of revolution,
it is interesting to know the nature of the boundary layer because of
its effect on the model contour.

The boundary-layer transition Reynolds number on a 10° cone has
been used as a measure of the steadiness of the free stream in various
NACA facilities (ref. 4). A similar highly polished thin-walled cone
was used to determine the %. by surface-temperaturemeasurements in

the M =3.13 jet. The high free-stream Reynolds number per foot pro-
duces an extremely thin boundary layer which requires that the ratio of .

average height of surface roughness to height of boundary layer be small.
The ratio is made small by a high degree of polish on the model surface
and by reducing the free-stresn Reynolds number.

The model with a 0.050-inch skin thiclmess was machined from a
single piece of stainless steel. The surface was successively ground
with No. 1/0, No. 2/0, and No. 3/0 fine emery papers and the direction
of grinding with each paper was alternated from circumferentialto axial,
and conversely. A cutting oil of 5 percent psraffin with filtered kerosene
was used with each grinding. The final polish was obtained with a com-
mercial polish which contains a chromium grit whose average size is
1 micron.

The temperature distribution along the surface of the model was
determined by 18 iron-constantanthermocouples installed in a 20° helix
about the conical body with the first thermocouple located 3/4 inch from
the nose as shown in figure 27 and a picture of the completed model in
figure 28. A continuous record of the surface-temperaturevariation was
made throughout the test with a multi-chamnel recording oscillograph.

In order to facilitate a closer inspection of the boundary layer
by visual means, a schlieren system similar to that in reference 5, which
permits magnification greater in a plane normal to the flow than in the
direction of the flow, was constructed. The system incorporates three
spectacle-size lenses: one spherical and two cylindrical. The optical
diagrams are shown in figure 29. A magnification of 6, normal to the
flow, was obtained with this lens system incorporating a +34 diopter
cylindrical lens with a horizontal axis (lens no. .4in fig. 29) and a

“
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+6 diopter cylinder with a vertical axis (lens no. 5 in fig. 29). ‘The
lens mount in figure 30 allows the lens position and cylinder axes to he
varied. A comparison of the 10° cone using a conventional schlieren with
this system is shown in figure 31. A l-inch grid is superimposed on the
asymmetrical schlieren. Since the lens systa was not achromatic, a
filter which trsnsmits the yellow portion of the spectrum was used.

A second minimum was installed to reduce the stagnation pressure and
thereby reduce the free-stresm Reynolds number & and move the tran-
sition point onto the instrumented portion of the cone smd to a point
where the boundary layer has a substantial thiclmess. The diffuser con-
sisted of two 11° wedges with a length adjusted to avoid choking. The
portion of the diffuser downstream of the second minimum was extended to
a point beyond the model support as sho~m in figure 32. This extension

allowed the stagnation pressure to be reduced from 160 lb/in.2 to

65 lb/in.2 gage and a corresponding reduction of Reynolds number per inch

from 2.15X106 to 0.894x 106.

The variation of the transitional Reynolds number with free-stream
Reynolds nuniberis shown in figure 33. The transition point corresponding

to this curve is accurate to ** inch.

The transition point was also determined from the flow schlieren
(fig. 34) smd the corresponding transitional Reynolds number is plotted
in figure 33. The tests indicate that the transition point on the
constant-pressure-gradientmodel is so far forward that the boundary
layer is turbulent on the entire model.

—
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TABLE I.- CCMPARISON OF ORDINATES COMPUTED FROM TBE KNOWN PRESSURE

DISTRIBUTION WITH THE ACTUAL ORDINATES OF A

PARABOLIC BODY AT & = 3.02

Method

Pressure
Computedl

Pressure
Computedl

Pressure
Computedl

x, in.

1.0354
1.0354

1.0785
1.0785

1.1236
1.1236

y, in.

0.33618
.33620

.34979

.34981

.36400

.36401

El,deg

17.540
17.541

17.500
17.503

17.462
17.464

lComputed by the method of characteristicswith
contour of the body defined by the equation

where L = 40.

.
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TABLE II.- ORDINATES FOR TIE CONSTA&-PR~SSURIZ-GRAD= MODEL

DETERMINED BY THE METHOD OF CHARACTERISTICS

x/L

0.013900
.014495
.015120
.015777
.016472
.017211
.017999
.018843
.019754
.0207ko
.021815
.022995
.024301
.025760
.027405
.029286
.031470
.034058
.037204
.cA1172
.0k2472
.044234
.046251
.048374
.050616
.053003
.055549
.058283
.061241
.064445
.067957
.071823
.076121
.080945
.086427
.092729

r/L

0.0037244
.0038838
.0040507
.o&2262
.0044115
.0046081
.0048175
.0050419
.0052833
.0055447
.0058292
.0061412
.0064860
.0068703
.0073034
.0077975
.0083700
.0090465
.0098667
.010897
.011234
.011689
.012210
.012757
.013333
.013944
.014595
.015291
.016042
.016853
.017738
.018708
.019781
.020980
.022332
.023877

x/L r/L

0.10012 0.025672
.10896

● 027797
.11986 .030383
.13383 .033645
.14475 .036153
.15204 .037806
.15979 .039545
.16805 .041379
.17696 .043330
.18659 .045408
.19707 .047637
.20858 .050041
.22126 .052638
.23542 .055471
.25135 .058576
.26949 .062000
.29~2 .065802
.31500 .070058
.34442 .074843
.38064 .080258
.42679 .086351
.48878 .093003
.57912 .099151
.61182 .10025
.66079 .10058
.72415 .098326
.80423 .090034
.85734 .080054
.88806 .072029
.92456 .059352
.95000 .047426
.96611 .037746
.97610 .030486
.98209 .025457
.98742 .020324
.98954 .018061

.
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(a) Effect of varying axial position of model in tunnel

at Reynolds number 48.6 x 106 corrected for free-stream
. disturbances.

Fime 24.- Axial distribution of pressure coefficient of constant-pressure-
“gradient body at ~ =

Flagged symbols denote

3.05 co~rected for free-stream disturbances.

orifice displaced 1800.
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Figure 24.- Continued.
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(c) Effect of varying Reynolds number with the orifices at 0° at posi.
tion 1 corrected for free-strem disturbances.

Figure 24.- Concluded.

——-.. ..— —.-— . .. .. .- —- y___. . . ------- ____ _.. _ ~- ___________ .= _______ _



54 NACA TN 3555

Figure

Cp

I I I \l I I
q

I I I I I I I

“OHFFHklll.u.lllllll,-M
06 I

I \ Elo I I I I I

x/L

(a) Effect of radial position of orifices at Reynolds

number 46.2 x 106.

25. - Axial distribution of pressure coefficient of constant-rmessure-
gradient body at ~ .

Flagged symbols denote
3.13 corrected for free-stream disturb&ces.
orifice displaced 1800.

. .
.



, NACA TN 3555
55

Cp

,, , v- 1 I 1 I I I I I I

x/L

(b) Effect of varying Reynolds number with orifices at OO.

Figure 25.- Concluded.
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(a) Asymmetrical.

.

.,
Figure 31.. Comparison

(b) Conventional. L-90516

of 10° cone using conventional,and asymmetrical
schlierens.
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.

(a) Asymmetrical.

Figure 34. - Comparison

(b) Conventional. L-90517

of conventional and asymmetrical schlierens on a

10° cone at R = 12 x 106.
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